

INSTITUTE OF AGROPHYSICS P A S

Lublin, 10/05/2018

SOIL MOISTURE SENSING – FROM LOCAL TO GLOBAL

Mateusz Łukowski, Radosław Szlązak, Łukasz Gluba, Bogusław Usowicz, Jan Słominski, Jerzy Usowicz, Helena Łoś, Kamil Szewczak

Why soil moisture is important?

- Proper amount of water in soil is very important for effective crop production
- Information about soil moisture allows predicting floods and droughts
- Water in soil governs the energy flow and hydrologic cycle of the Earth

Problem

- Soil moisture can be spatially variable → in-situ field measurements on a large scale are very time consuming (and costly)
- Long-lasting measurement → easy to lose relevance in temporal scale and in forcing conditions
- Knowledge about soil moisture temporal behavior and spatial distribution is limited...

SWEX_POLAND network (10 automatic stations)

precipitation

air temperature

air humidity

wind speed

wind direction

barometric pressure

energy balance

soil moisture, temperature and salinity

soil moisture (profile)

soil temperature (profile)

soil water potential and soil temperature

radiative temperature of soil surface

Datasets are available here: <u>http://serwer.elbara.pl/agrostationdb/</u>

Field measurements

Spatial analyses – geostatistical methods

The empirical semivariograms $\gamma(h)$ for distance *h* were calculated from:

$$\gamma(h) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} [z(x_i) - z(x_i + h)]^2$$

where N(h) is the number of pairs of points $z(x_i)$ separated by the distance *h*.

Spatial analyses – geostatistical methods

INSTITUTE OF

Specific Surface Area (SSA) of soil: Map of Poland

INSTITUTE OF AGROPHYSICS

PAS

Specific Surface Area (SSA) of soil: Map of Poland

INSTITUTE OF AGROPHYSICS

PAS

Map of soil Specific Surface Area (SSA)

Water adsorption on soil specific surface \rightarrow damping of molecules movement

Field campaigns

Date	Purpose of the visit	Details of the visit
22/03 /2016	field campaign, maintenance	105 point measurements of soil moisture, soil salinity and soil temperature ×3 soil layers
06/05 /2016	field campaign, maintenance	Adding pyrometer above antenna cone. 53 measurements of soil moisture, salinity and temperature ×3 soil layers. >100 measurements of soil thermal properties. 53 soil samples taken. 15 measurements of LAI and 14 of soil roughness.
18/05 /2016	On-Site Acceptance Test (OSAT), field campaign	OSAT and 24 measurements of soil moisture, salinity and temperature ×3 soil layers. 48 measurements of soil thermal properties. 24 soil samples taken. 10 measurements of LAI and single of soil roughness. Pyrometer cable adjustment.
03/06 /2016	field campaign, maintenance	24 measurements of soil moisture, salinity and temperature ×3 soil layers. 48 measurements of soil thermal properties. 24 soil samples taken. ELBARA's antenna cleaning.
28/07 /2016	field campaign	49 measurements of soil moisture, salinity and temperature ×3 soil layers. 98 measurements of soil thermal properties. 8 measurements of LAI.
19/09 /2016	field campaign	90 measurements of soil moisture, salinity and temperature ×3 soil layers. >100 measurements of soil thermal properties. 44 soil samples taken. 8 measurements of LAI and 10 of soil roughness. 4 vegetation destructive samples taken.
03/11 /2016	field campaign	59 measurements of soil moisture, salinity and temperature ×2 soil layers. 118 measurements of soil thermal properties. 20 soil samples taken. 5 measurements of soil roughness.
18/05 /2017	field campaign	86 measurements of soil moisture, salinity and temperature ×3 soil layers. 82 measurements of soil thermal properties. 48 soil samples taken

Soil moisture – local scale

SM 0-5cm (m3 m-3)

ELBARA Poland – Bubnow Wetland

ELBARA Poland – Bubnow Wetland

Cultivated field

Fence

Wetland

Thermal-properties station

Agrometeorological station

Fallow

ELBARA tower

ana ana

Bubnow Wetland

Brightness temperature around ELBARA's tower

Brightness temperature around ELBARA's tower – dataset

贲

← → C ③ locahost/elbara/index.php

ELBARA results explorer ver 0.12

Click here for calibrated sky measurements database

Elevation angle all						
35 50 65 80		= 40 = 55 = 70 = 85				
Azimuth angle						
0 60 120 180 240 300	10 70 130 190 250 310	20 80 140 200 260 320	30 90 150 210 270 330	40 100 160 220 280 340	50 110 170 230 290 350	

Date	Time	Elev	Azi	TB_HP	Flag_HP	TB_VP	Flag_VP	SysTempDiff	T_ext	T_set
2017-02-01	16:15:00	35	0	253.9806	0	271.654	100	-0.001	272.15	277.15
2017-02-01	16:16:00	40	0	235.6615	0	258.8013	100	0.012	272.15	277.15
2017-02-01	16:16:00	45	0	224.355	0	259.5751	100	0.01	272.15	277.15
2017-02-01	16:17:00	50	0	213.912	0	260.7098	0	0.005	272.15	277.15
2017-02-01	16:17:00	55	0	207.3839	0	264.5647	0	-0.002	272.15	277.15
2017-02-01	16:18:00	60	0	206.2457	0	263.8867	0	-0.006	272.15	277.15
2017-02-01	16:18:00	65	0	207.3291	0	260.7176	0	-0.008	272.15	277.15
2017-02-01	16:19:00	70	0	204.0235	0	254.0143	0	-0.007	271.95	277.15
2017-02-01	16:19:00	75	0	188.6469	0	242.4835	0	-0.007	271.95	277.15
2017-02-01	16:20:00	80	0	169.4713	0	222.6541	0	-0.006	271.95	277.15
2017-02-01	16:20:00	85	0	154.158	0	192.594	0	-0.003	271.85	277.15
2017-02-01	04:20:00	35	0	254.0873	100	272.9211	100	-0.003	269.55	277.15
2017-02-01	04:21:00	40	0	232.9013	0	259.0178	100	0.012	269.55	277.15
2017-02-01	04:21:00	45	0	220.5495	0	259.5512	100	0.012	269.55	277.15
2017-02-01	04:22:00	50	0	210.3312	0	260.8662	100	0.005	269.55	277.15
2017-02-01	04:22:00	55	0	204.3852	0	265.3677	0	0.001	269.55	277.15

http://serwer.elbara.pl/elbaradb/

Download results in CSV

Brightness temperature around ELBARA's tower – time series

Time series of calibrated brightness temperatures of soil (exemplary footprint azimuth=0°, elevation=45°).

Quasi-simultaneous observations of several footprints under the same meteorological conditions

Exemplary brightness temperatures (in Kelvins) of the test-site, measured by ELBARA (localized in 0,0 point of plot). Left-hand panel – horizontal polarization, right-hand panel – vertical. Data collected 22/03/2016.

Soil moisture vs. brightness temperature

Shutko, A. M. (1982) "Microwave radiometry of lands under natural and artificial moistening."

Jackson, T.J. et al. (1987) "Salinity effects on the microwave emission of soils"

Soil texture and mineralogical composition

Soil properties – local scale

Measurements of soil moisture distribution in layers

soil moisture, water potential, temperature, thermal properties

Soil Moisture retrieved with L-MEB model (from Brightness Temperature)

Temporal dependences of SM measured with a sensor and retrieved with L-MEB model. Red, narrow vertical lines indicate precipitation events. SM values were obtained from microwave brightness temperatures measured at azimuth angle 290°. The retrieval has been done assuming T_{GC} , τ_{nad} and SM as free parameters while $H_r = 0.3$.

Mesoscale – KBW

Mesoscale – SPI

Satellite data

- Large region of measurement (meso- and global scale)
- Spatial continuity
- Consistency
- Cost effectiveness

Mesoscale – KBW_MODIS 👗

AGROPHYSICS

Legenda

KBW_MODIS_okres 05
-261
-243
-225
-206
-188
-170
-152
-134
-116
-97.7

KBW_MODIS vs. SPI

Porównanie KBW MODIS z SPI w punktach IMGW okres 05 (wg. IUNG)

Soil Moisture and Ocean Salinity

Launched in November 2009

Parameters:

- Precision: 4% volumetric water content
- Pixel area: 40x40 km
- Revisit period: twice a day

http://www.esa.int

elbara.pl

2017

Mesoscale – SMOS

Mesoscale – KBW

http://www.esa.int

ELBARA – "single SMOS antenna"

SMOS vs. ELBARA comparison

WETLAND

SMOS vs. ELBARA comparison

SMOS vs. ELBARA comparison

Coefficients of determination (R²)

SMOS	Pin 19		Pin 35		Pin 39		Pin 40	
ELBARA	Т _в Н	T _B V						
Azimuth 0° (meadow)	0.31	0.39	0.28	0.43	0.32	0.42	0.32	0.37
Azimuth 170° (wetland)	0.12	0.30	0.12	0.33	0.11	0.27	0.12	0.27
Azimuth 310° (cultivated field)	0.08	0.16	0.02	0.21	0.00	0.17	0.00	0.15

ELBARA_PD (Penetration Depth)

HR EXCELLENCE IN RESEARCH

- The team: <u>Mateusz Łukowski</u>, Bogusław Usowicz, Jerzy Lipiec, Edyta Rojek, Radosław Szlązak, Łukasz Gluba, Joanna Sagan, *Wojciech Marczewski*, Ewa Słomińska, Jan Słomiński, Andrzej Kotarba, Krystyna Stankiewicz
- II 2013 II 2015 (CCN1→VIII 2016, CCN2→VII 2017)
- Financed from PECS (Plan for European Cooperating States, between Government of Poland and European Space Agency)

Technical Support for the fabrication and deployment of the radiometer ELBARA-III in Bubnow, Poland

HR EXCELLENCE IN RESEARC

- The team: <u>Mateusz Łukowski</u>, Bogusław Usowicz, Jerzy Usowicz, Edyta Rojek, Radosław Szlązak, Andreas Wiesmann, Mike Schwank, Charles Werner
- II 2015 VII 2016
- Financed by European Space Agency
- The ELBARA instrument goes from one research team to another under a loan agreement with ESA. Thanks to this project ELBARA III was built specifically for Poland!

Soil Moisture and Ocean Salinity (SMOS) – 7 years on orbit

PENETRATION DEPTH?

The purpose of the projects is to obtain:

The radiometric characteristics of wetlands
 "Penetration Depth" for the L-band

Posters

- Snow melting effect on L-band brightness temperature
- ELBARA: Low altitude L-band radiometer for soil moisture retrieval
- Compatibility of soil moisture remote sensing data of SMOS with ELBARA instrument results – the comparison on long time scale

Websites: elbara.pl soilaqchar.pl

INSTITUTE OF AGROPHYSICS

THANK YOU FOR YOUR ATTENTION!